
Pronounced Chemo-, Regio-, and Stereoselective
[2 + 2] Cycloaddition Reaction of Allenes toward
Alkenes and Alkynes

Masanari Kimura, Yoshikazu Horino, Yoshinori Wakamiya,
Toshiya Okajima,† and Yoshinao Tamaru*

Department of Applied Chemistry
Faculty of Engineering, Nagasaki UniVersity

1-14 Bunnkyo, Nagasaki 852, Japan
Department of Chemistry, Faculty of Culture

and Education, Saga UniVersity
1 Honjo, Saga 840, Japan

ReceiVed July 31, 1997

[2 + 2] Cycloaddition reactions between allenes and alkenes
have frequently been employed for the preparation of methyl-
enecyclobutane derivatives.1-4 Photochemical initiation5 and
Lewis acid6 and catalytic transition-metal7 promotion have
proved to be successful for preparative purposes. Strictly
thermal reactions generally incur the drawbacks of requiring
high temperatures (mostly>200 °C) and providing mixtures
of chemo-, regio-, and stereoisomeric products in moderate or
poor yields.
Here we disclose that 4-ethenylidene-1,3-oxazolidin-2-ones

1a-c8 (eq 1) undergo an extraordinarily facile [2+ 2] addition
reaction chemoselectively at the allenic C1′-C2′ double bond9,10
with alkenes and alkynes2 to furnish methylenecyclobutane
and -cyclobutene derivatives3 with excellent regio- and
stereoselectivities. The reaction proceeded smoothly at tem-

peratures as low as 70-100 °C and providedZ-3 as single
diastereomers.11 The selective formation ofZ-3 indicates that
2was apparently incorporated as the two-carbon component of

the cyclobutane and cyclobutene rings of3 from the more
congested face of the C1′-C2′ double bondssynto N-tosyl or
N-benzoyl groups.
In Table 1 are summarized the results of the reactions of1a,b

and 2 with substituents of a wide electronic variety. The
cycloaddition of 1a,b and electron-deficient olefins2a-c
occurred with great facility and provided3a-d in good yields
(runs 1-4, Table 1). To our surprise, alkenes bearing a phenyl
group (runs 5 and 6) and also even alkenes directly conjugated
with an electron-donating trimethylsiloxy group (run 7) reacted
with similar ease. Furthermore, 2,3-dimethyl-1,3-butadiene (2f)
served selectively as a 2π component to furnish3h in an
excellent yield (run 8). This contrasts with the fact that dienes
tend to serve as the 4π component, under both thermal12,13and
transition-metal activation,14 furnishing [4+ 2] adducts exclu-
sively or preferentially over [2+ 2] adducts.15

Alkynes were also engaged in the [2+ 2] addition (runs 9
and 10). Amazingly, the products3i,j were isolated as single
diastereomers. The structure was unequivocally elucidated to
beZ by NOE experiments: e.g.,3i displayed 6.4 and 4.0% NOE
of the tolyl o-protons and C-5 protons by irradiation at C-2′
and C-4′ protons, respectively.
In order to clarify the stereochemical course of the reaction

of 1 and alkenes, we examined the reaction of1awith styrene-
d8 (eq 2) and were gratified to find that the reaction was also
highly stereoselective (Z-3k:E-3k ) >45:1). The structure of

Z-3k was determined as follows. All of the cyclobutane ring
protons of the parent3eappeared as base line separated peaks
in the1H NMR spectrum, each of which was assigned by NOE
experiments [400 MHz (CDCl3) δ 2.76 (dm,J ) 15.0 Hz, H4′
(cis to Ph)), 2.99 (dm,J ) 15.0 Hz, H4′ (trans to Ph)), 3.24
(dm,J) 16.2 Hz, H2′ (cis to Ph)), 3.49 (dm,J) 16.2 Hz, H2′
(trans to Ph)), 3.65 (quint,J ) 8.2 Hz, H3′)].16 On the other
hand, the1H NMR spectrum ofZ-3k displayed only a pair of
doublets in the cyclobutane region [400 MHz (CDCl3) δ 2.74
(d, J ) 15.0 Hz, H4′ (cis to Ph)), 2.98 (d,J ) 15.0 Hz, H4′
(trans to Ph)]. Similar Z-selectivity was observed for the
reactions of1a with both electron-deficient pentadeuterio-R-
methylacrylonitrile (>97%Z) and electron-richâ,â-dideuterio-
R-(trimethylsiloxy)styrene (>95%Z).
As summarized in eq 3, even1c, the C-5 gem-dimethyl

derivative of1a, displayed a reactivity and diastereoselectivity
similar to1a: 1c reacted with styrene (20 equiv, 100°C, 5 h,
neat) to furnish3l in 79% isolated yield. The reaction with
styrene-d8 (50 equiv., 80 °C, 10 h, neat) providedZ-3m
exclusively in 80% yield. Furthermore,1c reacted withcis-â-
monodeuteriostyrene17 (96 atom % D; 20 equiv, 100°C, 28 h,
neat) to give a mixture ofZ,cis-3n andZ,trans-3n in a ratio of
ca. 97:3 in 90% isolated yield. This clearly indicates that the
cis-geometry of the staring alkenes was retained almost com-
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pletely in the product.18 The structures ofZ-3m andZ,cis-3n
were elucidated in a manner similar to that forZ-3k.16

The mechanistic details associated with the thermal [2+ 2]
reactions constitute a topic of much study and debate (either
concerted or stepwise).1-4,13,15,18,19Most studies, evidenced by
the regio- and stereochemical outcome and hydrogen-deuterium
isotope effects,20 seem to strongly favor the stepwise biradical
mechanism. All of the results obtained from the [2+ 2]
addition reactions of1a-c, on the other hand, seem to point to
a concerted mechanism involving a six-electron Hu¨ckel [π2s+
(π2s + π2s)] transition state, proposed by Pasto (Figure 1).21

The unique reactivity associated with1a-c (and the related
allene compounds)10 might be primarily attributed to a strong
σ*N-S-π*C1′-C2′ interaction of1a,c (or σ*N-C-π*C1′-C2′ in-
teraction for1b), which causes (1) the lowering of theπ*C1′-C2′
energy level (and hence, lowering of the activation energy for
the [2+ 2] addition) and (2) the rehybridization of theπ*C1′-C2′
orbitals [sp3-like, and hence, better overlap between the p
orbitals of C-1 and C-2′ in the opposite face toN-tosyl]. Three-
system interaction22 [HOMOC1′-C4, LUMOC1′-C2′, and
HOMOelectron-rich 2 (Figure 1a) or LUMOelectron-deficient2 (Figure
1b)], with a coaxial overlap of the p orbitals of C-1′ and C-2
and a perpendicular overlap of the p orbitals of C-2′ and C-1,
necessitates a 90° counter-clockwise rotation of the oxazolidi-
none ring (i.e., the rotation of theN-tosyl toward C-2) to furnish
Z-3. The mechanism proposed here was supported by the RHF/
3-21G* concerted transition state structure (Figure 2) and the
geometrical transformation along the intrinsic reaction coordi-
nate for the reaction of1a (SO2Me in place of SO2Tol) and
2c.23 An alternative coaxial approach of the p orbitals of C-2′
and C-1, accompanied by a perpendicular interaction between
the p orbitals of C-1′ and C-2,21 could hardly be reconciled with
the selective formation ofZ-3m andZ,cis-3n (eq 3), since the
C-5 dimethyl groups of1cwould sterically prohibit this mode
of approach.
In summary, the allenes1a-c readily undergo thermal [2+

2] additions with alkenes and alkynes with pronounced chemo,
regio-, and stereoselectivities. The alkenes encompass ethylenes
bearing not only electron-attracting and conjugating groups but
also electron-donating groups. Even 1,3-dienes are engaged in
exclusive [2+ 2] addition reactions.
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Table 1. Thermal [2+ 2] Cycloaddition of1a,bwith Alkenes and
Alkynes2

aUnless otherwise noted,1 (0.5 mmol) and2 (4.0 mL, 40-60 mmol)
were heated under N2. b All products were characterized by1H (400
MHz), 13C (100 MHz) NMR, IR, MS, and/or elemental analyses. The
structure of3a was determined by X-ray crystallographic analysis.
cMixture of 1 and2 was diluted with dioxane (1 mL).dCompounds
1a (0.5 mmol) and2d (20 mmol) were reacted.eCompounds1a (0.5
mmol) and2e(10 mmol) were reacted.f An unidentified product (10%
based on a 1:1 adduct) was isolated.

Figure 1. Orbital interactions for (a) electron-rich and (b) electron-
deficient alkenes. In both a and b, the p orbitals of C-1′ and C-2 overlap
coaxially and those of C-2′ and C-1 perpendicularly.

Figure 2. RHF/3-21G* transition structure for the reaction of1a (SO2-
Me in place of SO2Tol) and2c.
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